Notes continued:

Correlation Coefficient (r):

Measures the strength of the correlation (association) between the data on a scale from -1 to 1.

Least Square Regression Line and Correlation Coefficients.notebook

Notes continued:

Least Square Regression Line (LSRL):

Think of it as an equation that represents an extremely accurate line of best fit for your scatterplot data.

y=mx+b
slope y-intercept

Inputting data into desmos:

7

Least Square Regression Line and Correlation Coefficients.notebook

Notes continued: Describing the association:

Strength:

Look at the correlation coefficient (r).

The closer (r) is to -1 or 1 the stronger the correlation.

Look at the graph. The less scattered the data from the LSRL, the stronger the correlation.

Form/Shape:

The shape of the association.

Linear? Non-Linear? Clusters?

Direction:

Positive correlation-as one variable increases, the other variable increases

Negative correlation- as one variable increases, the other variable decreases †

Outliers:

Look at the graph.
Do any of the data
points not follow the
trend? (far away
from LSRL)

Least Square Regression Line and Correlation Coefficients.notebook

•

Least Square Regression Line and Correlation Coefficients.notebook

Least Square Regression Line and Correlation Coefficients.notebook

Least Square Regression Line and Correlation Coefficients.notebook

12

Least Square Regression Line and Correlation Coefficients.notebook

