4-44. Identify the growth and starting point (y-intercept) in each representation below.
Complete a table for the rule $y=3 x-2$
Write the algebraic rule for the pattern:

x	-2	-1	0	1	2
y					

Draw a complete graph for this rule.

Is (-50, -152) a point on the graph? Explain.

4-48. Simplify each of the expressions below.
a. $-(5 x+1)$
b. $6 x-(-5 x+1)$
c. $-(1-5 x)$
d. $-5 x+(x-1)$

CL 4-77. Solve the equation. $2-(3 x-4)=2 x-9$.

4-49. Invent a tile pattern that grows by 3 each time. Figure 2 has 8 tiles. Draw Figures $0,1,2$, and 3 . Identify the growth and the starting point.

4-51. For each equation below, solve for the variable by isolating it.
a. $3 p-7+9-2 p=p+2$, solve for p
b. $-2 x+5+(-x)-5=0$, solve for x

4-52. Solve each equation below for x. Then check your solutions.

$$
\begin{array}{ll}
\frac{x}{8}=\frac{3}{4} & \frac{2}{5}=\frac{x}{40} \\
\frac{1}{8}=\frac{x}{12} & \frac{x}{10}=\frac{12}{15}
\end{array}
$$

4-59. Use what you know about m and b to graph each rule below without making a table. Draw a growth triangle for each line.

$$
y=2 x-3
$$

$$
y=-2 x+5
$$

4-60. Examine the graph at right, which displays three tile patterns.
a. What do you know about Figure 0 for each of the three patterns?

A-

B-
C-
b. Which pattern changes most quickly?
c. Which figure number has the same number of tiles in patterns B and C? Explain how you know.
d. Write a rule for pattern B.

